

PENETAPAN KADAR FLAVONOID DAN FENOL DARI DAUN SRIKAYA (Annona squamosal L) SERTA AKTIVITAS SEBAGAI ANTIOKSIDAN

DETERMINATION OF FLAVONOID AND PHENOL LEVELS FROM SRIKAYA LEAVES (Annona squamosal L) AND ACTIVITY AS ANTIOXIDANT

¹ Wiwik Werdiningsih, ¹Assolychatu zahro

¹Biokimia ,IIK Bhakti Wiyata Kediri

Info Artikel

Sejarah Artikel:
Submitted:24
September 2020
Accepted: 30
Desember 2020
Publish Online: 30
Desember 2020

Kata Kunci:

Daun Srikaya, total fenol, total flavonoid, Antioksidan, DPPH, IC₅₀

Keywords:

Srikaya leaves, total phenol, total flavonoids, antioxidant, DPPH, IC₅₀

Abstrak

Latar Belakang: Asap rokok dan asap kendaraan bermotor dapat menyebabkan pencemaran udara. Apabila berlangsung dalam waktu lama akan menyebabkan penyakit degenerative. Kerusakan akibat radikal bebas dalam tubuh dapat diatasi oleh antioksidan. Daun srikaya mengandung antioksidan seperti flavonoid, total fenol, glikosida, alkaloid, saponin, tanin. **Tujuan:** menetapkan kadar flavonoid dan fenol dari daun srikaya yang diekstrak serta aktivitas antioksidan. **Metode:** Jenis penelitian ini menggunakan screening fitokimia, penentuan kadar flavonoid total dan uji aktifitas antioksidan daun srikaya dengan metode DPPH. **Hasil:** Daun srikaya 1 kg dengan pelarut etanol menghasilkan ekstrak dengan rendemen 29.312 g. Skrining fitokimia positif jika mengandung flavonoid, fenolik, alkaloid dan tanin. Kadar senyawa fenolik dan flavonoid sebesar 1.43 μg GAE/mg dan 0.0317 μg QE/mg, sedangkan nilai IC₅₀ sebesar 60.437 ppm. **Kesimpulan:** Penelitian ini menunjukkan bahwa semakin besar kadar fenolik dan flavonoid total pada daun srikaya maka akan semakin tinggi aktivitas antioksidannya.

Abstract

Background: Cigarette smoke and motor vehicle fumes can cause air pollution. If it lasts a long time, it will cause degenerative disease. Free radical damage in the body can be overcome with antioxidants. Srikaya leaves contain antioxidants such as flavonoids, total phenols, glycosides, alkaloids, saponins, tannins. **Objective:** To determine the phenol content and flavonoid levels of srikaya leaf extract and its antioxidant activity. **Method:** The type of research used was phytochemical screening, determination of total flavonoid levels and antioxidant activity test of srikaya leaves using the DPPH method. **Results:** The extraction of 1 kg of srikaya leaves yielded an ethanol extract with a yield of 29,312 g. Phytochemical screening showed positive extracts of flavonoids, phenolics, alkaloids and tannins. The levels of phenolic and flavonoid compounds were 1.43 μ g GAE / mg and 0.0317 μ g QE / mg, while the IC50 value was 60.437 ppm. **Conclusion:** This study shows that the greater the total phenolic and flavonoid levels in srikaya leaves, the higher the antioxidant activity.

PENDAHULUAN

Pencemaran udara seperti asap rokok dan asap kendaraan bermotor yang terus meningkat dapat menyebabkan radikal bebas, Kerusakan sel akibat reaktivitas senyawa radikal bebas mengawali timbulnya berbagai penyakit degeneratif seperti kanker, infeksi, penyakit jantung koroner, rematik, penyakit respiratorik, katarak, liver dan anging. Hal ini terjadi karena adanya interaksi senyawa oksigen reaktif (ROS) atau senyawa nitrogen reaktif (RNS) dengan DNA. Hasil interaksi tersebut menyebabkan mutasi DNA pada saat proses replikasi. Penumpukan DNA termutasi menyebabkan perkembangan sel neoplastasi (Sayuti, dkk., 2015). Kerusakan oksidatif dalam tubuh dapat diatasi oleh antioksidan endogen seperti *catalase* yang berikatan dengan Fe, Namun apabila didalam tubuh terdapat senyawa radikal bebas yang melebihi batas kemampuan proteksi antioksidan seluler, maka dibutuhkan antioksidan tambahan atau antioksidan eksogen untuk menetralkan radikal bebas yang terbentuk (Sayuti, dkk., 2015)

Tubuh manusia tidak memiliki cadangan antioksidan yang berlebih. Apabila di dalam tubuh terbentuk banyak radikal bebas, maka tubuh akan membutuhkan antioksidan lebih banyak. Hal ini dapat diatasi dengan mengkonsumsi zat-zat yang mengandung antioksidan baik sintetis maupun alami. Antioksidan alami dapat digunakan sebagai alternatif pengganti antiokisdan sintetik dengan tujuan untuk meminimalkan efek samping. Sumber antioksidan alami dapat ditemukan dari bahan alam yang mengandung komponen senyawa fenolik seperti flavonoid, tocopherols, asam fenol, senyawa nitrogen (alkaloid, asam amino, amin, derivate klorofil) dan karotenoid. Antioksidan alami terutama flavonoid mempunyai efek biologis dalam jangka panjang termasuk antibakteri, antialergi, antivirus, anti inflamasi, antitrombotik, dan vasodilatasi (Sariwati, *et al.*, 2017). Salah satu tumbuhan yang mengandung komponen senyawa fenolik adalah tumbuhan srikaya (*Annona squamosa L.*) Srikaya termasuk pohon buah-buahan kecil yang tumbuh di tanah berbatu, kering, dan terkena cahaya matahari secara langsung. Tumbuhan yang asalnya dari Hindia Barat ini akan berbuah setelah berumur 3-5 tahun. Srikaya sering ditanam di pekarangan, dibudidayakan, atau tumbuh liar (Widodo, 2010).

Salah satu bagian dari tanaman srikaya yang banyak dikonsumsi masyarakat untuk meningkatkan imunitas tubuh adalah daunnya. Daun srikaya dapat digunakan secara empirik sebagai antioksidan, antidiabetik, hepatoprotektif, dan aktivitas antitumor. Kandungan senyawa metabolit sekunder pada srikaya adalah glikosida, alkaloid, saponin flavonoid, tanin, karbohidrat, protein, senyawa fenolik, pitosterol, dan asam amino (Barve, 2011). Tujuan dari penelitian ini adalah untuk mengetahui kandungan total flavonoid, total fenol pada daun sirkaya serta aktivitas antioksidannya.

METODE PENELITIAN

Alat yang digunakan dalam penelitian ini antara lain: blender, timbangan analitik, erlenmeyer (*pyrex*), gelas ukur (*pyrex*), beaker glass (*pyrex*), alumunium foil, kertas saring, corong, cawan porselin, tabung centrifuge, tabung reaksi (*pyrex*), pipet tetes, pipet ukur (*pyrex*) rak tabung reaksi, batang pengaduk, Spektrofotometer – UV VIS . Bahan-bahan yang digunakan

dalam penelitian ini antara lain: daun srikaya, asam asetat, aquadest, asam sulfat pekat (CH3COOH), asam asetat (H2SO4), ammonia, reagen mayer, reagen dragendorff, reagen wagner, serbuk Mg, HCl pekat, NaCl 0,9% BaCl2 1 %, FeCl3, methanol p.a, etil asetat, n-heksan, methanol, DMSO, vitamin C, Folin-Ciocateu, AlCl₃, 2,2 – diphenyl-1 picrylhdrazyl (DPPH) dari Tokyo Chemical Industri (TCI,Tokyo, Japan)

Prosedur Pengumpulan Data

1. Determinasi

Tanaman yang digunakan dalam penelitian ini dilakukan determinasi di Laboratorium Herbal Materia Medica Batu.

2. Pembuatan Ekstrak

Daun Srikaya diperoleh dari desa Mojo Kediri. Ditimbang daun Srikaya sebanyak 2 kg, setelah dicuci bersih dengan air mengalir, kemudian ditiriskan selanjutnya dipotongpotong dan pengeringan dengan oven 40°C. Setelah kering simplisia diserbukkan dengan blender. Maserasi dilakukan dengan merendam simplisia sebanyak 50 gram ke dalam 600 ml campuran (1:1:1) n-heksan, etil asetat, metanol. Maserasi dilakukan dalam bejana yang ditutup menggunakan *aluminium foil* selama 3 hari sambil sesekali diaduk. Hasil maserasi dipekatkan dengan *Rotary evaporator* dan diuapkan lalu di timbang bobot susut ekstrak (Fitra, 2014).

Ekstrak dihitung dengan persamaan berikut:

Bobot ekstrak = (berat vial+ ekstrak) – bobot vial kosong

Rendemen = berat ekstrak/ berat serbuk simplisia X 100%

3. Skrining Fitokimia

a) Uji flavonoid

1ml sampel dimasukkan tabung reaksi, kemudian ditambah serbuk Mg dan 5 tetes HCl pekat. Sampel positif mengandung flavonoid jika terbentuk warna kuning, merah, atau jingga (Nafisa dkk., 2014). Hasil positif mengandung senyawa flavonoid jika terbentuk warna jingga.

b) Uji tanin

Ditambahkan larutan 3 tetes FeCl3 1% pada 1 ml sampel. Apabila terbentuk warna hijau kehitaman maka sampel positif mengandung tanin (Munte dkk., 2015). Hasil positif mengandung senyawa tanin jika terbentuk warna hijau kehitaman.

c) Uji saponin

1ml sampel dimasukkan tabung reaksi, kemudian ditambah 2 ml aquadest lalu dipanaskan 2-3 menit. Dikocok dengan kuat apabila sudah dingin. Hasil positif mengandung senyawa tannin apabila ada busa yang stabil selama 30 detik (Nafisah dkk., 2014).

d) Uji triterpenoid atau steroid

1ml sampel dalam tabung reaksi, kemudian ditambah asam asetat anhidrat dan asam sulfat pekat. Dikocok perlahan dan didiamkan. Adanya steroid apabila terbentuk warna biru atau hijau. Adanya triterpenoid apabila terbentuk warna merah atau ungu (Nafisah dkk., 2014). Hasil positif senyawa steroid atau triterpenoid jika terbentuk warna ungu.

e) Uji alkaloid

1ml sampel dalam tabung reaksi ditambahkan 5 tetes ammonia, lalu dikocok dan disaring. Ditambah 2 ml asam sulfat 2N pada filtrat kemudian dikocok. Larutan tersebut dibagi menjadi tiga bagian, tabung pertama ditambah 1 tetes pereaksi Mayer, adanya alkaloid jika terbentuk endapan putih. Tabung kedua ditambah pereaksi Dragendorff 1 tetes, adanya alkaloid jika terbentuk endapan jingga. Tabung ketiga ditambah pereaksi Wagner 1 tetes dan adanya alkaloid jika terbentukn endapan coklat (Nafisah dkk., 2014). Hasil positif adanya alkaloid apabila terbentuk endapan berwarna merah, kuning dan coklat sesuai reagen masing-masing.

f) Uji fenol

Sampel sebanyak 1 gram diekstrak menggunkan etanol 70% sebanyak 20 ml, kemudian 1 ml ekstrak ditambah larutan FeCl₃ 5% sebanyak 2 tetes. Hasil positif adanya fenol apabila terbentuk warna hjau atau hijau biru.

4. Penetapan kandungan total fenol

Penetapan kandungan fenol total dengan metode Diaz (2012) dan sedikit modifikasi. Ekstrak daun srikaya 0,5 g dimasukkan dalam labu ukur 5 ml sampai diperoleh konsentrsi 100 mg/ml, kemudian diambil 0,5 ml dari ekstrak 100 mg/ml, selanjutnya dimasukkan dalam labu ukur 5 ml sampai diperoleh konsentrasi 10 mg/ml. 0,5 ml ekstrak direaksikan dengan reagen Folin-Ciocalteu sebanyak 5 ml, selanjutnya diinkubasi 15 menit pada suhu kamar. Kemudian ditambahkna 4 ml Natrium karbonat

dan diinkubasi lagi 30 menit. Dengan spektroskopi UV-Vis pada panjang gelombang 760 nm dapat dibaca absorbansinya. Pada kurva standart, absorbansi yang diperoleh

dirubah menjadi persen regresi linier. Kandungan total fenol paling tinggi selanjutnya

dilakukan tahap nilai antioksidan (IC₅₀).

5. Penetapan kandungan total flavonoid

Dengan metode aluminium klorida serta dengan standar kuersetin maka dapat ditentukan kandungan total flavonoid. Ekstrak 0,1 gram ekstrak dimasukkan dalam labu ukur 5 ml dengan pelarut etanol 50%. Dipipet 2 ml ekstrak kemudian ditambahkan etanol 50% sebanyak 2 ml. Pada tabung reaksi dimasukkan ekstrak 2 ml dan ditambahkan larutan AlCl₃ sebanyak 4 ml, kemudian dikocok sampai homogen, didiamkan 30 menit. Pada panjang gelombang 415 nm dilakukan pegukuran absorbansi (Chang dan Wen., 2002). Absorbansi yang diperoleh dirubah menjadi persamaan regresi linier sesuai kurva standar. Kandungan total flavonoid paling tinggi selanjutnya dilakukan tahap pengujian nilai antioksidan (IC₅₀).

6. Uji Aktivitas Antioksidan Ekstrak Daun Srikaya

a) Pembuatan Larutan DPPH 0.1mM

Disiapkan larutan DPPH dengan konsentrasi 0.1 mM, yaitu dengan menimbang 3.94 mg DPPH dan dilarutkan dengan 100 ml metanol p.a pada labu ukur.

b) Pembuatan Larutan Blanko

Larutan DPPH 0.1 mM di pipet sebanyak 0.8 ml dalam mikro tube lalu ditambahkan dengan DMSO sebanyak 0.2 ml dan dihomogenkan kemudian diinkubasi selama 30 menit. Dengan spektrofotometer UV-Vis dapat diukur serapan pada panjang gelombang maksimum.

Pembuatan Standar Vitamin C

Vitamin C ditimbang 50 mgram kemudian dilarutkan dalam DMSO. Selanjutnya di masukkan ke dalam labu ukur sampai 50 ml sampai didapatkan konsentrasi 1000 ppm. Selanjutnya larutan tersebut dibuat variasi konsentrasi seperti 1, 2, 3, 4 dan 5 ppm. Pembuatan larutan tersebut sebanyak masing-masing konsentrasi, masukan pada labu ukur 10 ml dan encerkan dengan DMSO hingga tanda batas. 2 ml masing-masing konsentrasi larutan sampel (Vitamin C) dimasukkan dalam tabung reaksi dan ditambah 3 ml DPPH.

c) Pembuatan Larutan Uji

Ekstrak daun srikaya ditimbang sebanyak 50 mg dilarutkan DMSO sampai 50 ml, didapatkan larutan stock dengan konsentrasi 1000 ppm. Kemudian larutan uji dibuat dalam beberapa konsentrasi yaitu 20, 40, 60, 80 dan 100ppm. Masing-masing dimasukkan dalam tabung reaksi selanjutnya masing-masing 2 mL larutan uji ditambah 3 mL larutan DPPH dan

diinkubasi selama 30 menit pada ruangan gelap. Dianalisis menggunakan spektrofotometer UV-Vis pada panjang gelombang maksimum.

d) Uji Antioksidan dengan metode DPPH

Larutan blanko, larutan uji serta larutan vitamin C sebagai kontrol positif diinkubasi pada suhu 37°C. Dengan spektrofotometer diukur serapannya pada panjang gelombang maksimum yang sudah ditetapkan. Pengulangan pengukuran dilakukan secara triplo. Perhitungan presentase hambatan terhadap DPPH menggunakan rumus:

Hambatan (%) = serapan blanko-serapan sampel/ serapan blanko X 100%

e) Nilai % IC₅₀ (Inhibition Concentration)

Menetukan nilai IC_{50} dapat diperoleh garis antara 50% daya hambat dengan sumbu konsentrasi, menggunakan persamaan y=ax+b, dimana x adalah konsentrasi larutan uji yang dapat menghambat 50% larutan radikal bebas dan y=50.

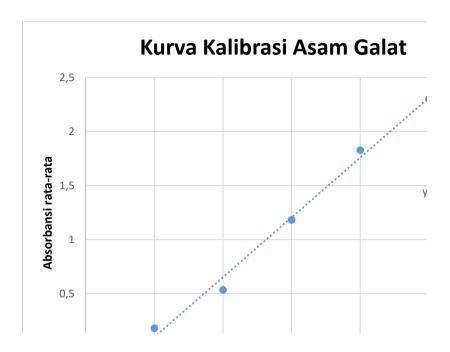
HASIL PENELITIAN

Perolehan Ekstrak Daun Srikaya

Sampel yang digunakan dalam penelitian ini adalah daun Srikaya segar dicuci bersih, kemudian dioven dengan suhu tertentu hingga kering, dan dihaluskan dengan menggunakan blender (Jeni T, 1992). Metode ekstraksi yang digunakan dalam penelitian ini adalah maserasi dingin sehingga sangat efektif untuk senyawa-senyawa kimia yang tidak tahan terhadap pemanasan (Ditjen POM, 2000). Penyarian dilakukan dengan metode maserasi, kelebihan dari metode ini adalah pengerjaan dan peralatan yang digunakan sederhana dan mudah, tetapi metode maserasi memiliki kekurangan yaitu pengerjaan membutuhkan waktu lama, membutuhkan cairan penyari yang banyak dan penyarian zat aktif kurang sempurna. Hasil ekstraksi yang diperoleh kemudian disaring untuk memisahan residu dan filtrate. Maserat yang diperoleh kemudian diuapkan untuk memisahkan pelarut etanol dan fitokimia yang terekstrak dari daun srikaya. Setelah diuapkan, dihasilkanekstrak yang berbentuk cairan yang disebut sebagai eksrak kasar. Hasil rendemen sebesar 29,312 g.

Skrining Fitokimia Daun Srikaya

Untuk mengetahui adanya senyawa metabolit sekunder pada komponen daun srikaya dapat dilakukan dengan cara penapisan fitokimia. Uji fitokimia ini dapat dikerjakan dengan pereaksi spesifik yaitu pereaksi pada uji fitokimia Harbone (1987). Pada Tabel 1 nampak hasil skrining fitokimia.


Tabel 1. Hasil Skrining fitokimia ekstrak Daun Srikaya

Uji Fitokimia Senyawa	Hasil Positif Menurut Pustaka	Hasil Yang Diperoleh	Ekstrak Kental	
Flavonoid	Terbentuk lapisan warna merah, kuning, atau jingga	Terbentuknya lapisan berwarna jingga	Positif	
Alkaloid	- Reaksi positif jika terbentuk endapan menggumpal berwama putih atau kuning dengan pereaksi Mayer Terjadi endapan berwama cokelat dengan pereaksi Wagner.		Positif dengan Wagner	
Fenolik	Reaksi positif jika warna tampak lebih hitam dari sampel	Terjadi perubahan warna lebih hitam dari sampel	Positif	
Terpenoid	Reaksi positif ditandai dengan terbentuknya warna merah atau ungu		Negatif	
Saponin	Reaksi positif ditandai dengan terbentuk busa setinggi 1-10 cm yang stabil tidak kurang dari 10 menit		Negatif	
Tanin	Reaksi positif ditandai dengan terjadinya pembentukan wama biru kehitaman atau hijau kehitaman.	perubahan warna biru	Positif	

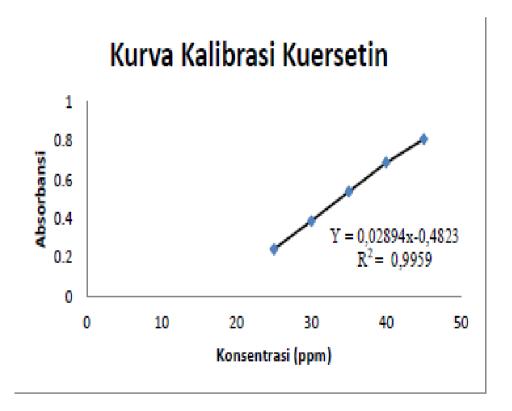
Uji Total Fenol

Hasil uji skrining pada ekstrak daun srikaya yang positif mengandung fenol, selanjutnya dilakukan uji kandungan total fenol dengan metode Folin-Ciocalteu. Metode ini berdasarkan reaksi reduksi pada gugus hidroksi fenol dengan standar vitamin C. Senyawa yang tergolong fenolik termasuk fenol sederhana dapat bereaksi dengan reagen Folin-Ciocalteu meskipun bukan tergolong penangkap radikal efektif. Pada senyawa fenolik yang memiliki gugus aromatic akan dapat mereduksi fosmolibdat fosfotungstat menjadi molybdenum tungsten. Reagen Folin-Ciocalteu dapat bereaksi dengan senyawa fenolik pada suasana basa. Hal ini agar terjadi reaksi disosiasi proton pada senyawa fenolik untuk menjadi ion fenolat (Ukieyanna, 2012). Reaksi Folin-Ciocalteu dengan fenol akan menghasilkan warna kuning dan apabila ditambah sodium karbonat akan menghasilkan warna biru. Apabila warna biru semakin gelap merupakan indikasi absornasi larutan semakin tinggi. Hasil pengukuran total fenol didapatkan pada Tabel 2.

Tabel 2. Kurva Folin-Ciocalteu

Tabel 3. Hasil kadar total Fenol

Berat Ekstrak	Absorbansi	Konsentrasi Fenol	Kadar Fenol total GAE
(gram)		(ppm)	(%)
1	0.368	28.71	1.43


Hasil penelitian menunjukkan bahw eksrak etanol 70% daun srikaya memiliki kandungan total fenol sebesar 1.43 % GAE. Senyawa fenolik yang terdapat dalam ekstrak lebih larut dalam pelarut etanol 70%. Hal ini dikarenakan karena pelarut etanol memiliki tingkat kepolaran yang sama dengan senyawa fenolik, sehingga pelarut etanol lebih banyak mengekstrak senyawa fenol.selain ini ekstrak etanol juga lebih efektif dalam melisis didnding sel tumbuhan yang bersifat semipolar yang mengakibtakan senyawa fenolik akan lebih keluar dari sel (Tiwari *et al*,2011).

Senyawa fenolik merupakan senyawa yang dapat berperan sebagai antioksidan. Hal ini disebabkan oleh adanya gugus hdroksil di dalam senyawa fenolik yang dapat mendonorkan atom hydrogen melalui mekanisme tra sfer electron, sehingga proses oskidasi dpaat dihambat dan kemudian dapat berpotensi sebagai antioksidan (Bettuzi *et al.*2006). senyawa fenolik sendiri digolongkan menjadi beberapa kelompok senyawa, yaitu fenol sederhana, kumarin, lignin, lignin, tanin terkondensasi, tanin terhidrolisis, asam fenolat, dan flavonoid (Khodammi *et al*, 2013). Namun kebnayakan fenolik masuk ke dalam kelompok flavonoid (Pratt dan Hudson, 1990).

Uji Flavnoid Total

Hasil uji skrining pada ekstrak daun srikaya yang positif mengandung flavonoid, selanjutnya dilakukan uji kandungan total flavonoid dengan prinsip terbentuknya senyawa kompleks dari AlCl₃. Hal ini terjadi karena C-4 gugus keto lalu dengan C-5 atau C-3 gugus hidroksil yang berdekatan akan mengalami pergeseran panjang gelombang kearah visible (Nampak) yang nampak warna kuning pada larutan (Ukieyanna, 2012). Larutan standar kuersetin dipilih untuk penetapan kandungan total flavonoid karena kuersetin salah satu golongan flavonoid. Hasil pengukuran flavonoid total dijelaskan pada Tabel 4.

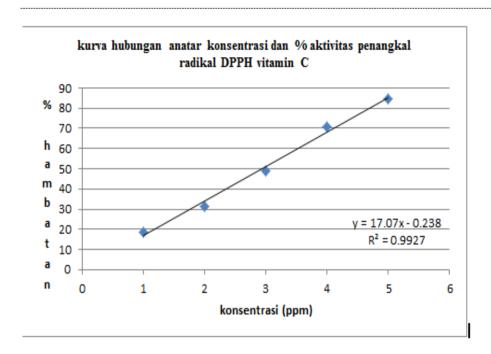
Tabel 4. Kurva Kuersetin

Tabel 5. Hasil kadar total flavonoid

Berat Ekstrak	Absorbansi	1 1	Kadar Flavonoid total QE (%)
(gram)	0.436	(ppm) 31.73	0.0317

Hasil penelitian memunjukkan bahwa ekstrak etanol 70% daun srikaya memiliki kadar total flavonoid sebesar 0.0317 QE. Penentuna kadar flavonoid total dilakukan untuk mengetahui

jumlah kelompok senyawa flavonoid yang terdapat dalam sampel.


Senyawa flavonoid kuersetin digunakan sebagai standar dalam penentuan kadar flavonoid total karena kuersetin termasuk senyawa flavonoid yang ditemukan pada tanaman (Kaur dan Kapoor. 2001). Selain itu senyawa kuersetin merupakan senyawa yang berpotensi sebagai antioksidan dibandingkan senyawa fenolik lainnya (Prior. 2003). Menurut Widyawati (2010), Penambahan NaOH pada metode ini untuk memberikan suasana basa yang ditandai dengan berubahnya warna larutan menjadi jingga sampai merah.

Senyawa flavonoid dikelompokkan menjadi beberapa kelas, yaitu flavanol, flavon, flavanon, isoflavon, dan antosianin (Heim *et al*, 2002). Katekin termasuk ke dalam kelas flavanol, sedangkan kuersetin termasuk ke dalam kelas flavonol. Menurut Jiang *et al* (2009), flavonoid pada daun srikaya memiliki peran dalam aktivitas antioksidan.

Penentuan Antioksidan dengan Metode DPPH

Menurut metode Blois (1958), uji aktivitas antioksidan didasarkan absorbansi pada panjang gelombang 517 nm. Ekstrak etanol pada daun srikaya dapat diuji aktivitas antioksidannya dengan melihat perubahan warna DPPH. Perubahan warna ini akan sebanding dengan penurunan absorbansi sesuai konsentrasi dari sampel. Hasil uji antioksidan dapat dilihat pada Tabel 6.

Tabel 6. Kurva Standar Vitamin C

Tabel 7. Nilai IC₅₀ ekstrak daun Srikaya

<u>Sampel</u>	Konsentrasi (ppm)	<u>Absorbansi</u>		Persen Inhibisi	Persamaan linier	IC ₅₀
		Blanko	Sampel uji			
Ekstrak etanol	20	0.575	0.37	36.652	y= 0.3313x+ 29.9655	60.473
	40		0.316	45.043	R= 0.9866	
	60		0.295	48.695		
	80		0.247	57.043		
	100		0.214	62.782		

Berdasarkan Tabel 7 nampak bahwa ekstrak etanol daun srikaya yang tergolong sangat kuat aktivitas antioksidannya yaitu nilai IC_{50} sebesar 60.473 ppm.

Nurhayati (2009) menyatakan semakin tinggi konsentrasi ekstrak, maka persentase penghambat ekstrak terhadap radikal bebas DPPH juga semakin tinggi. Sedangkan aktivitas antioksidan pada (blanko) vitamin C yaitu 3.233 ppm lebih kuat dibanding dengan ekstrak etanol daun srikaya. Sehingga vitamin C merupakan antioksidan kuat yang mampu menjaga kesehatan sel, meningkatkan penyerapan asupan zat besi, dan memperbaiki system kekebalan tubuh (Kumalaningsih, 2006).

SIMPULAN

Berdasarkan hasil penelitian yang telah dilakukan maka dapat disimpukan bahwa eksrak daun Srikaya menunjukkan kadar senyawa fenolik dan flavonoid sebesar 1.43 μ g GAE/mg dan 0.0317 μ g QE/mg, sedangkan nilai IC₅₀ ekstrak daun srikaya pada metode DPPH sebesar 60.437 ppm. Kadar senyawa fenolik dan flavonoid pada sampel memepengaruhi aktivitas antioksidan sampel tersebut. Semakin besar kadar senawa fenolik dan flavonoidnya semakin tinggi aktivitas antioksidannya.

REFERENSI

- Amic D, Amic DD, Beslo D, Trinasjtic N. 2003. Structure-radical scavenging activity relationship of flavonoid. *Croatica Chemica Acta*. 76(1): 55-61.
- Bettuzi S, Brausi M, Rizzi F, Castagnetti G, Perrachia G, Corti A. 2006. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraephiteal neoplasia: apreliminary report forom a one-year proof-of-principle study. *Cancer Res.* 66: 1234-1240. doi: 10.1158/0008-5472.CAN-05-1145.
- Khodammi A, Wilkes MA, Roberts TH. 2013. Techniques for analysis of plant phenolic compounds. *Molecules*. 18: 2328-2375. doi: 10.3390/molecules 18022328.
- Tiwari P, Kumar B, Kaur M, Kaur G, Kaur H. 2011. Phytochemical screening and extraction. *Int Pharmaceutica Science*. 1(1): 98-106.
- Kaur C, Kapoor HC. 2001. The millenium's health: antioxidants in fruit and vegetables. *Int. J. Food Sci. Technol.* 36: 703-725. Prior RL. 2003. Fruit and vegetables in the prevention of cellular oxidative damage. *Am. J. Clin. Nutr.* 78: 570-578.

- Prior RL. 2003. Fruit and vegetables in the prevention of cellular oxidative damage. *Am. J. Clin. Nutr.* 78: 570-578.
- Heim KE, Tagliaferro AR, Bobilya DJ. 2002. Flavonoid antioxidant: chemistry, metobolism and structure-activity relationship. *J nut Bio*. 13: 572-584.
- Kumalaningsih, S. 2006. Antioksidan Alami Penangkal Radikal Bebas. Surabaya. Trubusan Agrisarana.
- Romadonu et al. 2014. Antioxidant activity oflotus leaves extract (*Nelumbo nucifera*). Program Studi Teknologi Hasil Pangan, Universitas Sriwijaya, Indralaya Ogan Ilir.
- Subroto MA. 2006. Tumbuhan Sarang Semut. 2(6)8082.http://ahliherbal.com/artikel/Nirmala/(Diakses2 Maret 2014).
- Fengel D. dan Wegener G. 1995. *Kayu: Kimia Ultrastruktur Reaksi-Reaksi*. Gadjah Mada University Press, Yogyakarta.
- Vivi *et al.* 2015. Fraksi Semi Polar Dari Daun Mangga Kasturi. Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Brawijaya, Malang.
- Erawati. 2012. Uji Aktivitas Antioksidan Ekstrak Daun Garciniadaedalanthera Pierre Dengan Metode DPPH Dan Identifikasi Golongan Senyawa Kimia Dari Fraksi Paling Aktif. *Skripsi*. Jakarta: Universitas Indonesia.
- Erukainure., O.L., Oke, O. V., Ajiboye, A. J., Okafor, O. Y. 2011. Nutritional Qualities And Phytochemical Constituents Of Clerodendrum Volubile, A Tropical Non-Conventional Vegetable. *Int. Food Res. J.* 18(4). 1393-1399.
- Ukhty N. 2011. Kandungan Senyawa Fitokimia Total Fenol dan Aktivitas Antioksidan Lamun (Syringodium isoetifolium). Skripsi (Tidak dipublikasikan). Departemen Teknologi Hasil Perairan Fakultas Perikanan Dan Ilmu Kelautan Institut Pertanian Bogor.
- Wrasiati, L.P., I.A. A. Triastuti, L. Suhendra. 2008. Antioxidant Activity and Quality Characteristics of Fragiapani Tea Produced at Different Drying Temperature. Laporan Penelitian Hibah DIPA Universitas Udayana, Denpasar. 34 p.
- Winarsi, H. 2011. Antioksidan Alami dan Radikal Bebas. Kanisius. Yogyakarta.
- Alabri, T.H., Al Musalami, A.H., &Hossain, M.A. 2014. Comparative study of phytochemical screening, antioxidant and antimicrobial capacities of fresh and dry leaves crude plant extracts of Daturametel *L, Journal of King Saud University-science*, 26, pp. 237-243.
- Guyton and Hall. 2008. Buku ajar Fisiologi Kedokteran ed. 11. Jakarta: EGC.

- Harborne, J.B. 1987. *Metode Fitokimia Penuntun Cara Modern Menganalisis Tumbuhan*. Penerbit: ITB Bandung.
- Kesuma, Sayuti dan Rina Yendrina. 2015. *Antioksidan,Alami dan sintetik*. Penerbit Anadalas Universty Press. Padang.
- Janet, J.R., Puzon, M., &Rivera, W.L. 2015. Free radical scavenging activity and bioactive secondary metabolites from various extracts of Glinusoppositifolius (L) Aug. DC. (Molluginaceae) roots, stem, and leaves. *Asia Pac J Trop Dis.* 5(9). pp. 711-715.
- Kartika. 2010. Profil Kimiawi dari Formulasi Ekstrak Meniran, Kunyit, dan Temulawak Berdasarkan Aktivitas Antioksidan Terbaik. *Skripsi*. Institut Pertanian Bogor, Jawa Barat.
- Manisha, Kalantri dan Aher AN. 2016. Reviu on traditional medicinal plan:Plumeria Rubra. 4(6): 204-207.
- Markham KR dan Andersen OM. 2006. *Flavonoids*. Taylor dan Francis group. Francis. Terjemahan Kosasih P, Penerbit Institut Teknologi Bandung, Bandung.
- Molyneux, P. 2004. The Use of The Stable Free Radical Diphenylpicryl-hydrazyl (DPPH) for Estimating Antioxidant Activity, Songklanakarin *J. Sci. Technol.*, 26(2), 211-21.
- Notoatmojo, S. 2012. Metodologi Penelitian Kesehatan. Jakarta: Rineka Cipta.